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Acoustic energy density has been shown previously to be an e!ective cost function for
active control of noise in enclosed sound "elds. Here bias errors in the energy density
measurements that occur in one-dimensional sound "elds when using the two-microphone
technique to estimate the particle velocity are discussed. Four types of bias error for both
two- and three-microphone arrangements are investigated; namely, inherent, phase
mismatch, sensitivity mismatch and spatial errors.
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1. INTRODUCTION

To overcome the observability di$culties that are inherent with microphones as error
sensors for the active control of enclosed sound "elds, Sommerfeldt and Nashif [1]
suggested minimizing the energy density at discrete locations. Energy density is the sum of
the acoustic potential and kinetic energies and can be used as an alternative to measuring
the pressure at a point. In a numerical simulation Sommerfeldt and Nashif [1] found that
minimization of the energy density at a discrete location signi"cantly outperformed the
minimization of squared pressures.

There is very little published literature about the sensor systems and the errors arising
from the measurement of energy density, especially with regard to its use in active control
systems. However, a great deal has been written about measuring acoustic intensity [2}12],
a detailed summary of which may be found in Fahy [13]. Much of this literature is directly
relevant to the measurement and error analysis of energy density sensors as will be seen
later.

According to Fahy [13], measurement of acoustic intensity and thus acoustic energy
density is subject to errors associated with the following factors: approximations in the
assumed relations between the directly transduced quantities and the energy density (inherent
errors): imperfections in the sensor transducers; imperfections in the signal processor in
its function of converting the acquired analogue signals into the quantities required to
compute energy density; errors of calibration; variations of transducer sensitivity from
the calibration value caused by environmental conditions; &&noise'' produced either
by non-acoustic disturbances, such as turbulent air#ow, or by the instrument itself.

The measurement of sound intensity and energy density requires estimates of both the
pressure and particle velocity. A microphone is almost exclusively used to measure the
sNow at the Institute of Sound and Vibration Research, University of Southampton, Southampton SO17 1BJ,
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pressure; however, measurement of the particle velocity is not as simple. The most common
technique of estimating the particle velocity is the two-microphone technique which uses two
separated microphones to estimate the gradient at the midpoint of the two elements, from
which the particle velocity can be calculated. The mean pressure is generally used as the
&&sensor pressure''.

There are three distinct sources of error which occur when estimating acoustic energy
density using the two-microphone technique; "nite separation (inherent) errors, di!raction
and interference e!ects at the microphones, and instrumentation errors. The inherent errors
act to limit the upper frequency range of the sensor and the instrumentation errors such as
magnitude and phase mismatches act to restrict the low-frequency limit.

The purpose of the following error analysis is to gain some primary understanding of the
errors that may arise during the measurement of energy density using the two-microphone
technique. It will be shown that the errors in both the pressure and particle velocity
components of the energy density will act to bias the overall energy density estimate.
Therefore, the following error analysis will investigate the e!ects of errors on the pressure,
particle velocity and energy density for one-dimensional sound "elds. The errors arising
from energy density measurement using three-dimensional sensors are to be presented in
a companion paper [14].

By considering one-dimensional sound "elds, there is a simple analytical solution to what
for three-dimensional sound "elds becomes an extremely complex expression [14] and it is
not a trivial task to draw conclusions from the 3-D analysis that are applicable to the 1-D
case. In addition, one-dimensional sound "elds probably form the most successful
environment for active noise control (ANC) system in practice. Thus, it is important that the
1-D case be treated separately, particularly because of the potential application to active
control of noise propagating in ducts.

The principles of energy density measurement and the errors arising in the measurement
of acoustic energy density will now be derived for measurement in one-dimensional sound
"elds. The work presented here is a summary of the errors, the derivations for which can be
found elsewhere [15].

2. PRINCIPLES OF ACOUSTIC ENERGY DENSITY MEASUREMENT

The instantaneous acoustic energy density E
D
(t, x) at some point x, is given by the

equation [16]

E
D
(t, x)"

p2 (t, x)

2oc2
#

ov2 (t, x)

2
, (1)

where p (t, x) and v (t, x) are the instantaneous pressure and particle velocity, respectively, at
x, c is the speed of sound and o is the density of the #uid. The instantaneous particle velocity
in a one-dimensional sound "eld is given by Euler's equation

v (t, x)"!

1

o P
Lp (t, x)

Lx
dt. (2)

In practice, it is very di$cult to measure directly the particle velocity and it is generally
estimated using a two-microphone "nite di!erence approximation of the pressure gradient
[13] as shown in Figure 1.



Figure 1. Illustration of the estimation of the particle velocity and pressure from the two-microphone technique.
Typically, the sound pressure estimate shows greater error than the particle velocity estimate.
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The "nite di!erence approximation for the pressure gradient between two points x
1

and
x
2

is

+
xx

p (t, x)+
p (t, x

2
)!p (t, x

1
)

Dx
. (3)

Using the "nite di!erence approximation, equation (2) can be re-written as

v (t, x)+!
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2
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)] dt, (4)

where 2h is the distance separating the acoustic centres of the microphones, commonly
referred to as the separation distance. The pressure at the point midway between the
microphones is approximated by the "nite sum
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2
. (5)

Hence, the instantaneous acoustic energy density using two microphones is
approximated by
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From equation (1) the time-averaged acoustic energy density at x is given by

EM
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where p6 and v6 are the time-averaged acoustic pressure and particle velocity at x respectively.

3. ERRORS IN THE MEASUREMENT OF ACOUSTIC ENERGY DENSITY IN 1-D

The following error analysis for acoustic energy density has drawn heavily from the work
of Fahy [13] and others [2}12] regarding errors in sound intensity measurements.
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It will be seen that sensing energy density is signi"cantly more tolerant of
instrumentation errors than sensing sound intensity. This is because the calculation of
sound intensity requires the product between the pressure and particle velocity to be taken,
and when these are in quadrature or close to quadrature, such as in a reactive sound "eld,
any small error in phase between the pressure and particle velocity leads to a large error in
the active sound intensity. The calculation of acoustic energy density takes the sum of the
squares of the pressure and particle velocity, and therefore is only susceptible to errors in
magnitudes of the two components.

As was discussed earlier, there are three distinct sources of error which occur when
estimating acoustic energy density using the two-microphone technique; namely, "nite
separation (inherent) errors, di!raction and interference e!ects at the microphones, and
instrumentation errors.

The following errors will now be analyzed for a one-dimensional sound "eld.
Inherent errors arise due to "nite sum and "nite di!erence approximations used to

estimate the pressure and particle velocity respectively.
Phase error is an instrumentation error and is due to phase mismatches between

microphone pairs which occur commonly in practice.
Sensitivity error is also an instrumentation error and arises from sensitivity mismatches

between microphone pairs.
¸ength error is another form of instrumentation error, but unlike the phase and

sensitivity error which arise from transduction and electrical sources, the length error is due
to errors in the physical construction of the sensor.

Di+raction and interference e+ects arise from the "nite size of the body housing the
microphones.

Other errors including the e!ect of mean #ow and turbulence, environmental e!ects such
as humidity and temperature and statistical or random errors.

3.1. FINITE SEPARATION (INHERENT) ERRORS

According to Fahy [13], the two-microphone technique used for the transduction of
sound pressure and particle velocity is subject to systematic errors which arise from the fact
that they involve approximations, namely equations (4) and (5). The inherent errors are
functions of the type of "eld under investigation and the orientation and position of the
sensor within the "eld. The implication of this fact is that the magnitude of the inherent
error can never be precisely estimated in an arbitrary sound "eld. Therefore, examples of
errors in a range of idealized sound "elds are presented to provide an indication of their
sensitivity to the parameters of the "eld and of the sensor.

The following analysis applies to a one-dimensional sound "eld with spatial variation in
the direction of the sensor, which for convenience will be denoted x. According to the
Taylor series expansion [13], the pressure at a point is given by

p (x#h, t)"p (x, t)#hp(1) (x, t)#(h2/2)p(2) (x, t)#(h3/6)p(3) (x, t)#2

#(hn/n!)p(n) (x, t)#2, (8)

where p(n) (x, t) denotes the nth derivative of p with respect to x at any time t.
Consider a pair of microphones for which the acoustic centres are separated by a distance

2h as shown in Figure 1. Equation (5) gives the estimated pressure at a point midway
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between the transducer centres as

p
e
(t)"
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2

"p (t)#(h2/2)p(2) (t)#(h4/24)p(4) (t)#2#(h2n/2n!)p(2n) (t)#2 (9)

in which explicit indication of spatial position has been omitted for simplicity in notation.
From equation (4), the estimated axial particle velocity component at the centre of the
sensor is given by
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The normalized errors in the estimates of p and v, are obtained by dividing the estimate (be
it pressure or velocity) by the exact measurement and subtracting 1, i.e.,

e (p)"(p
e
!p)/p (11)

and

e (v)"(v
e
!v)/v. (12)

Substituting the Taylor series expansions for the pressure and particle velocity, given by
equations (9) and (10), into the expressions for the normalized errors, given by equations (11)
and (12), results in

e (p)"[(h2/2)p(2) (t)#(h4/24)p(4) (t)#2]/p (t) (13)

and

e (v)"
P

t
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[(h2/6)p(3) (q)#(h4/120)p(5) (q)#2] dq

P
t

~=

p(1) (q) dq
. (14)

These expressions can only be evaluated if the time history of p and of its spatial
derivatives are known, which is the case with harmonic "eld. Thus, this error analysis is not
applicable to random sound "elds.

Consider a harmonic "eld de"ned by, p (x, t)"RMP (x) e+utN and v (x, t)"RM< (x) e+utN;
the explicit indication of x-dependence has been omitted. Now, the complex velocity
magnitude is

<"( j/uo)P(1) (15)
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and the complex velocity estimate is

<
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!P

2
) (16)

and the normalized error in the velocity estimate is given by
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. (17)

From equation (7) the estimated time-averaged acoustic energy density is approximated
by
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The Taylor series expansion of the time-averaged energy density estimate is [15]
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The exact time-averaged energy density is given by
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Substituting equation (15) into the above equation gives
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The normalized error in the energy density is given by
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Therefore, the Taylor series expansion of the normalized time-averaged energy density
error is
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In the future, when referring to the normalized energy density error the reference to
time-averaged will be omitted for brevity.

Although not immediately obvious from the above expression it will be shown in the
following two sections that in general the majority of the inherent error comes from the
"nite sum approximation of the pressure rather than the "nite di!erence approximation
used for the particle velocity. This is also the case when measuring sound intensity [12]. It is
therefore interesting to consider the case of a three-microphone energy density sensor where
the centre microphone measures the pressure at the centre of the sensor as seen in Figure 2.
The additional microphone does not increase the accuracy of the "nite di!erence
approximation. Consequently, in this latter arrangement, all the inherent error is due to the
velocity approximation and although the error is still in the order of (kh)2 the error is
substantially reduced.

The inherent energy density error for a three-microphone sensor in a reactive
one-dimensional sound "eld is given by the second term in equation (23), i.e.,
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It should be noted that the previous derivations are valid for any type of one-dimensional
sound "eld and may be used to calculate the resulting errors that would arise from
a one-dimensional energy density sensor in any one-dimensional environment. The errors
associated with two common idealized sound "elds models are now analyzed, namely;
a one-dimensional reactive sound "eld and a plane progressive wave. The reasons for
choosing the two extremes of acoustic environment to demonstrate the error analysis are as
follows: although most ANC applications tend to be in sound "elds that are neither purely
plane progressive waves nor reactive, the most successful applications do tend to occur
when the system is almost reactive or almost free "eld. For example, in heavily damped
reactive cavities, it is extremely di$cult to achieve global control throughout the enclosure.
Therefore, since the most successful ANC systems are found in either very lightly damped
reactive enclosures or free-"eld conditions it was considered that these were best
approximated by the two extremes just discussed.
Figure 2. Particle velocity from the two-microphone technique with an additional centre microphone.
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3.1.1. One-dimensional reactive sound ,eld

The sound "eld which exhibits greatest variation in the acoustic potential energy is
a cavity with a single mode excited. This situation is commonly encountered in low modal
density cavities and poses signi"cant problems when using microphones as error sensors.

For a harmonic sound "eld of frequency, u, in which p (x, t)"RMP (x) e+utN and
v (x, t)"RM< (x) e+utN, consider a stationary reactive sound "eld de"ned by the following:

p (x, t)"P
0
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l
x)RMe+utN"P

0
cos (k

l
x) cos (ut), (25)

where u is the driving frequency of the sound and k
l
is the eigenvalue of the mode given by

k
l
"nn/¸, where n is an integer and ¸ is the length of the cavity. The velocity corresponding

to a point x
0

is given by
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For the sound "eld given by equation (25) the exact energy density throughout the acoustic
space is

E
D
"

P2
0

4oc2
. (27)

The pressure and pressure gradients are given by
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x), (28, 29)
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P
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l
P, P(3)"k3

l
P

0
sin (k

l
x)"!k2

l
P(1). (30, 31)

To investigate the e!ect of wavelength on the accuracy of the estimates it is prudent to let
the length of the cavity increase with frequency such that ¸"nj/2, i.e., k

l
"k. This then

allows a direct comparison with the case of a free propagating wave. The normalized errors
for the pressure, velocity and energy density are given by equations (11), (12) and (22). For
a reactive sound "eld the pressure, velocity [13, section 5.6.1] and energy density [15] errors
are given by

e (p)"cos (kh)!1+!

(kh)2

2
#

(kh)4

24
!

(kh)6
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#2, (32)
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#2, (33)

e (E
D
)"!(kh)2 C

2 cos2 (kx)#1

3 D#(kh)4C
13 cos2 (kx)#2

45 D!2. (34)

Note that the normalized error in the estimate of the pressure is approximately three
times that of the normalized error in the velocity. By di!erentiating the above expression for
the energy density with respect to x and setting the derivative to zero, the maximum and
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minimum error can be found. It can be shown that the zero gradient occurs at sin (2kx)"0,
i.e., kx"nn/2, with the maximum error found at kx"nn and the minimum error at
kx"(2n#1)n/2. Therefore, the maximum and minimum are given, respectively, by

e (E
D
)
max

"!(kh)2#
(kh)4

3
!2, kx"nn,

e (E
D
)
min

"!

(kh)2

3
#

2 (kh)4

45
!2, kx"(2n#1)n/2. (35)

The "rst term is the energy density error when the acoustic pressure is at a maximum and
the particle velocity is zero. Therefore, the error is all due to the error in the pressure
measurement and so the above expression can also be derived by

e (E
D
)
max

"

p2
e
!p2

p2
"(1#e (p))2!1"2e (p)#e2 (p). (36)

Likewise, the smallest error in the energy density occurs when the particle velocity is at
a maximum (and the pressure is zero) and is given by

e (E
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"(1#e (v))2!1"2e (v)#e2 (v). (37)

For the three-microphone sensor the normalized inherent error is [15]

e (ED
3
)+sin2 (kx) C!

(kh)2

3
#

2 (kh)4

45
!2D . (38)

For the three-microphone sensor, the energy density error is obviously zero when at
a pressure maximum, i.e., kx"0, and has a maximum when at a velocity maximum, i.e.,
kx"(2n#1)n/2, given by the second term in equation (35). Therefore, the additional
microphone has reduced the maximum energy density error by a factor of three.

The inherent error for both the two-microphone sensor and the three-microphone sensor
are plotted against the non-dimensional separation, 2kh, for a single-mode reactive sound
"eld and a position to cavity length ratio of x/¸"1

4
in Figure 3. Obviously, the error for the

pressure, velocity and energy density vary with position so it is necessary to select some
position which typi"es the error as a function of non-dimensional separation. x/¸"1

4
was

chosen since the magnitude of the pressure and velocity are equal at this location.

3.1.2. Plane progressive wave

The errors arising from "nite separation measurements in a plane wave will now be
derived. Consider a plane wave de"ned by

p (x, t)"RMP
0
e+ut~+kxN. (39)

The pressure and gradients are given by

P"P
0
e~+kx, P(1)"!jkP, (40, 41)

P2"!k2P, P3"jk3P"!k2P(1). (42, 43)



Figure 3. Inherent errors as a function of the non-dimensional separation distance (2kh) for a reactive
one-dimensional sound "eld with x/¸"1/4: (a) pressure error, e (p) which is zero for the three-microphone sensor;
(b) particle velocity error, e(v) which is the same for both sensors; (c) energy density error, e (ED). Maximum
and minimum energy density error bands are shaded for the two-microphone sensor (dark grey) and the
three-microphone sensor (light grey): ** 2-mic sensor; ---- 3-mic sensor.
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It can be shown [13] that the energy density in a plane progressive sound "eld is given by

E
D
"

P2
0

2oc2
. (44)

It is interesting to note that the energy density in a plane progressive sound "eld is twice
that in a one-dimensional reactive sound "eld. The normalized errors for the pressure,
velocity [13] and energy density [15] are given by

e (p)"cos (k
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!

(kh)6

5040
#2, (46)

e (E
D
)"!

2

3
(kh)2#

17

90
(kh)4!2. (47)

Therefore, the error in the energy density measurement for a progressive sound "eld is
independent of position as one would expect. Note that the "rst term in the error is the same
as that for the error in intensity when using the two-microphone technique [13].



Figure 4. Inherent errors as a function of the non-dimensional separation distance (2kh) for a plane progressive
wave: (a) pressure error, e(p) which is zero for the three-microphone sensor; (b) particle velocity error, e(v) which is
the same for both sensors; (c) energy density error, e(ED): ** 2-mic sensor; - - 3-mic sensor.
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For the three-microphone sensor the normalized inherent error for a plane progressive
wave is

e (ED
3
)+!1

6
(kh)2# 1

45
(kh)4!2. (48)

The use of the additional microphone has therefore reduced the normalized error by
a factor of 4, compared to a factor of 3 in a reactive sound "eld.

The inherent error for both the two-microphone sensor and the three-microphone sensor
are plotted against the non-dimensional separation, 2kh, for a progressive plane wave in
Figure 4.

3.2. INSTRUMENTATION ERRORS

The two most common instrumentation errors are di!erences in the transducer transfer
functions, commonly referred to as linear distortion. Matching the transfer functions (both
amplitude and phase responses) of the microphones is of vital importance, particularly at
low frequencies where the actual phase di!erence of the sound pressures is small.

3.2.1. Phase mismatch errors

The e!ect of phase response mismatch upon the accuracy of any particular measurement
depends on the relative magnitudes of the phase mismatch of the microphone channels and
the actual phase di!erence of the sound pressures at the sensing points; the latter depends
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on the nature of the sound "eld, and the location and orientation of the sensor within the
sound "eld [13]. For example, in a reactive sound "eld, the actual phase di!erence between
the sensing points varies between kd and 0 as the sensor axis is rotated through 903 from an
initial orientation parallel to the direction of energy #ux. Therefore, the normalized phase
error varies from a "nite value to in"nity and so does the normalized velocity error.

Figure 5 illustrates the e!ect of a phase error of $/
s
on the estimates of p and *p. It can

be clearly seen that not only is there an error in the magnitude of the two estimates but
a phase error is also introduced. Unlike the signi"cant detrimental e!ects phase errors have
on the measurement of acoustic intensity, phase errors during the measurement of energy
density are relatively benign.

Therefore, in the case of simple harmonic "elds the pressure responses of the two
microphones with a phase mismatch 2/

s
are given by the products of the true pressures with

e$j/
s , that is

pL
1
(x, t)"p

1
(x, t)ej/

s , pL
2
(x, t)"p

2
(x, t) e~j/

s . (49, 50)

The actual phase di!erence between the transducers (for both a plane wave and
a single-mode reactive sound "eld) is /

0
"2kh where 2h is the sensor separation distance. It

will be shown that the pressure, velocity and energy density errors are a function of the ratio
of the phase mismatch error to the actual phase di!erence, 2/

s
//

0
.

The e!ects of phase mismatch will now be analyzed for two types of idealized sound
"elds.
Figure 5. Phasor diagram showing the e!ect of transducer phase mismatch. Adapted from Fahy [13].
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3.2.1.1. One-dimensional reactive sound "eld. Using the expression for a stationary
reactive sound "eld, equation (25), the mean of the two pressures with a total microphone
phase mismatch of 2/

s
is

pL
e
"

pL
1
#pL

2
2

"

P
0

2
[cos (kx#kh) cos (ut#/

s
)#cos (kx!kh) cos (ut!/

s
)], (51)

where the ? represents the pressure response with the phase mismatch. It can be shown that
the pressure estimate with the phase error is equal to the pressure estimate without the
phase error plus an additional term due to the phase error [15], i.e.,

p(
e
"p

e
#a

p
, (52)

where a
p

is the additional error due to the phase mismatch, given by

a
p
"P

0
/
s
sin (kx) sin (kh) sin (ut). (53)

Using equation (11) the normalized error for the pressure estimate is given by [15]

e (p( )"e (p)#j/
s
tan (kx) sin (kh), (54)

where e (p) is the normalized pressure error without the phase mismatch arising wholly from
the "nite sum and is given by equation (32). The additional error in the pressure estimate
due to the phase mismatch is zero at kx"nn and in"nite at kx"(2n#1)n/2, that is, when
the measurement is made at a pressure node.

As with the pressure estimate, the velocity estimate with the phase error is equal to the
velocity estimate without the phase error plus an additional term due to the phase error
[15], i.e.,

v(
e
"v

e
#a

v
, (55)

where a
v
is the additional error due to the phase mismatch given by

a
v
"

P
0

ou
/
s

h
cos (kx) cos (kh) cos (ut). (56)

Using equation (21) the normalized error for the velocity estimate is given by [15]

e (v( )"e (v)!j
/

s
kh

cot (kx) cos (kh), (57)

where e (v) is the normalized particle velocity error without the phase mismatch arising
wholly from the "nite di!erence and is given by equation (33). The additional error in the
velocity estimate due to the phase mismatch is zero at kx"(2n#1)n/2 and in"nite at
kx"nn, that is, when the measurement is made at a velocity node.

The normalized error of the energy density for small kh is therefore, given by [15]

e (EK
D
)+e (E

D
)#cos2 (kx)A

2/
s

2khB
2
, (58)
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where e (E
D
) is the normalized error in the energy density without the phase mismatch

arising wholly from the "nite separation and is given by equation (34).
Therefore, the normalized error in the energy density arising from the phase mismatch is

proportional to the square of the ratio of the phase error to the actual phase di!erence.
From equation (58) it can be seen that the minimum energy density error occurs at
kx"(2n#1)n/2 and is given by e (EK

D
)
min

"e (E
D
), that is error arising from only the "nite

separation between the microphones making up the energy density sensor. The maximum
error in the energy density estimate is found at kx"nn as

e (EK
D
)
max

"e (E
D
)#

(2/
s
)2

(2kh)2
. (59)

It is quite clear that the second term in the normalized error dominates the expression as
2kh approaches 2/

s
, which acts to limit the lowest frequency at which the energy density

sensor can be used successfully. It should be noted that the error in the energy density given
by equation (58) is independent of the sign of the phase error. The truncated Taylor series
expansions for the normalized error in pressure, velocity and energy density as given by
equations (54), (57) and (58) using a phase di!erence of 2/

s
"13 are plotted against the

non-dimensional separation distance in Figure 6 with a non-dimensional position of
x/¸"1

4
. The normalized energy density error given by equation (58) is also plotted against

the non-dimensional separation distance in Figure 7 for a variety of phase errors.
Figure 6. Normalized error in energy density in a reactive one-dimensional sound "eld as a function of the
non-dimensional separation distance (2kh) with x/¸"1/4: (a) pressure error, e(p) which is zero for the three-
microphone sensor; (b) particle velocity error, e(v) which is the same for both sensors; (c) energy density error,
e(ED). Maximum and minimum energy density error bands are shaded for the two-microphone sensor (dark grey)
and the three-microphone sensor (light grey): ** 2-mic sensor; } } } } 3-mic sensor.



Figure 7. Normalized error in energy density as a function of the non-dimensional separation distance (2kh) in
a reactive one-dimensional sound "eld for a variety of transducer phase mismatches with x/¸"1/4. For the case of
no phase error (03) there is no signi"cant error in energy density: 03; 0.53; 13; 23; 43.
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For a three-microphone sensor the normalized error for the pressure is obviously zero,
the error for the velocity is the same as given by equation (57) and the normalized error in
the energy density is given by equation (58), where e (E

D
)"e (ED

3
) is given by equation (38).

Therefore, it can be concluded that although the use of the additional microphone does
extend the upper bound at which the sensor can be used, it does not assist in reducing the
lower frequency limit.

3.2.1.2. Plane progressive wave. For the case of a plane wave the e!ect of a phase mismatch
is equivalent to modifying the sensor separation distance; i.e., for a phase mismatch of 2/

s
the sensor separation distance is khK "kh!/

s
or hK /h"1!/

s
/kh. The normalized errors

for the pressure, velocity [13] and energy density [15] are given by

e (p)"cos (khK )!1+!

(khK )2
2

#

(khK )4
24

!

(khK )6
720

#2, (60)

e (v)"
sin (khK )

kh
!1+A1!

/
s

khB A1!
(khK )2

6
#

(khK )4
120

!

(khK )6
5040

#2B!1, (61)

e (EK
D
)+

1

2C1!(khK )2#
1

3
(khK )4D#

(1!/
s
/kh)2

2 C1!
1

3
(khK )2#

2

45
(khK )4D!1. (62)
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As kh approaches zero, the normalized error in the energy density approaches

e (EK
D
)+!

/
s

kh
#

(/
s
/kh)2

2
. (63)

The truncated Taylor series expansions for the normalized error in pressure, velocity and
energy density as given by equation (60)}(62) using a phase di!erence of 2/

s
"!13 are

plotted against the non-dimensional separation distance in Figure 8. The "gure shows that
the normalized error in the pressure still approaches zero as kh approaches zero, despite the
phase mismatch; however, as the free-"eld phase di!erence 2kh approaches the phase error
(2/

s
), the normalized errors in both the velocity and energy density become signi"cant,

increasing at 12 dB per halving in frequency (octave). This is also shown graphically in
Figure 9 where the error in energy density given by equation (62) is plotted against
non-dimensional separation distance for a variety of phase errors.

For the case of the three-microphone sensor the statement regarding the reactive sound
"eld holds, namely that the error in pressure is zero, the velocity error is the same as for the
two-microphone sensor given by equation (61) and the energy density error is given by the
second term in equation (62), i.e.,

e (EK D
3
)+

(1!/
s
/kh)2

2 C1!
1

3
(khK )2#

2

45
(khK )4D!

1

2
. (64)
Figure 8. Normalized errors as a function of the non-dimensional separation distance (2kh) in a plane wave
conditions for a transducer phase mismatch of !13: (a) pressure error, e(p) which is zero for the three-microphone
sensor; (b) particle velocity error, e(v) which is the same for both sensors; (c) energy density error, e(ED):** 2-mic
sensor; } } } } 3-mic sensor.



Figure 9. Normalized error in energy density as a function of the non-dimensional separation distance (2kh) in
a plane wave conditions for a variety of transducer phase mismatches: !43; !23; !13;

!0.53; 03; #0.53; #13; #23; #43.
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3.2.2. Sensitivity errors

In addition to phase mismatch, the two microphone sensitivities may di!er. The pressure
sum and di!erence are altered in both magnitude and phase by a sensitivity mismatch [13].
The e!ect is illustrated in Figure 10.

Let the sensitivity di!erence between the transducers be $¹ such that the ratio of the
sensititvities is given by (1#¹)/(1!¹)+1#2¹ for small ¹, i.e.,

p(
1
(x, t)"p

1
(x, t) (1!¹), p(

2
(x, t)"p

2
(x, t) (1#¹). (65, 66)

The symmetry of the sensitivity error between the two microphone in the above
expressions was used in order to simplify the analytical derivation of the errors arising from
the sensitivity mismatch. The e!ects of sensitivity mismatch will now be analyzed for two
types of idealized sound "eld.

3.2.2.1. One-dimensional reactive sound "eld. Given a stationary reactive sound "eld
de"ned by the following:

p (x, t)"P
0
cos (kx)RMe*utN"P

0
cos (kx) cos (ut), (67)

where u and k are the frequency and wavenumber of the sound, respectively, the velocity at
a point x

0
is given by

v (x
0
, t)"!

1

o P
Lp (x

0
)

Lx
dt"

P
0
k

ou
sin (kx

0
) sin (ut). (68)



Figure 10. Phasor diagram showing the e!ect of transducer sensitivity mismatch. Adapted from Fahy [13].
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The mean of the two pressures is estimated by two microphones spaced 2h apart,

p(
e
"

p(
1
#p(

2
2

"

P
0

2
[(1!¹) cos (kx#kh) cos (ut)#(1#¹) cos (kx!kh) cos (ut)], (69)

where the K represents the pressure response due to the sensitivity mismatch. It can be
shown that the pressure estimate with the sensitivity error is equal to the pressure estimate
without the sensitivity error, p

e
, plus an additional term due to the sensitivity error [15]; i.e.,

p(
e
"

p(
1
#p(

2
2

"p
e
#b

p
, (70)

where b
p

is the additional error due to the magnitude mismatch given by

b
p
"P

0
¹ sin (kx) sin (kh) cos (ut). (71)

Therefore, the normalized error of the pressure estimate is [15]

e (pL )"e (p)#¹ tan(kx) sin (kh), (72)
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where e (p) is the normalized pressure error without the sensitivity mismatch arising wholly
from the "nite sum approximation and is given by equation (32). It can be seen that the
normalized error in the pressure becomes in"nite for kx"n/2. This is because the exact
pressure is zero at this location and as a result, any error in the pressure produces an in"nite
normalized error.

As with the pressure estimate, the velocity estimate is equal to the velocity estimate
without the sensitivity error plus an additional term due to the sensitivity error [15], i.e.,

v(
e
"v

e
#b

v
, (73)

where b
v
is the additional error due to the magnitude mismatch given by

b
v
"!

P
0
¹

hou
cos (kx) cos (kh) sin (ut). (74)

The normalized error of the velocity estimate is [15]

e (vL )"e (v)#¹

cos (kh)

kh tan (kx)
"C

sin (kh)

kh
!1D#¹

cos (kh)

kh tan (kx)
, (75)

where e (v) is the normalized particle velocity error without the sensitivity mismatch arising
wholly from the "nite di!erence approximation and is given by equation (33). The
additional error in the velocity estimate due to the magnitude mismatch is zero at
kx"(2n#1)n/2 and in"nite at kx"nn, that is, when the measurement is made at
a velocity node.

The normalized error in the time-averaged energy density estimate is given by [15]

e (EK
D
)"e (E

D
)#

2¹

4
sin (2kx) sin (2kh)A1!

1

(kh)2B#A
2¹

2khB
2
cos2 (kx) cos2 (kh), (76)

where e (E
D
) is the normalized error in the energy density without the sensitivity mismatch

arising wholly from the "nite separation and is given by equation (34).
The "rst term in the expression is negligible for small sensitivity mismatches and can be

ignored. However, the second term is signi"cant and becomes very large as kh decreases.
The above equation for small kh can be rewritten as

e (EK
D
)+e (E

D
)!A

2¹

2khB sin (2kx)#A
2¹

2khB
2
cos2 (kx). (77)

Therefore, in order to keep the error in the energy density small, the non-dimensional
error in sensitivity 2¹ should be signi"cantly less than the non-dimensional microphone
separation 2kh. From the preceding expression it can be seen that the normalized energy
density error at kx"(2n#1)n/2 (pressure nodes) is given by e (E

D
), which is the error

arising only from the "nite microphone separation. By di!erentiating the preceding
expression for the normalized energy density with respect to x and setting the derivative
to zero, the maximum and minimum error can be found. It can be shown that the zero
gradient occurs at tan (2kx)"!2kh/¹, i.e., kx"1

2
arctan(!2kh/¹)#nn/2, with the
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maximum error found at kx"1
2
arctan (!2kh/¹)#nn and the minimum error at

kx"1
2
arctan (!2kh/¹)#(2n#1)n/2.

The truncated Taylor series expansions for the normalized error in pressure, velocity and
energy density as given by equations (72), (75) and (76) using a sensitivity di!erence of
2¹"1% are plotted against the non-dimensional separation distance in Figure 11 with
a non-dimensional position of x/¸"1

4
.

The normalized error in the pressure still approaches zero, despite the sensitivity
mismatch. However, when the wavenumber becomes small, both the velocity and energy
density errors increase at 12 dB per halving in frequency (octave). This is shown graphically
in Figure 12 where the error in energy density given by equation (76) is plotted against
non-dimensional separation for a variety of sensitivity errors.

For a three-microphone sensor, the pressure error is zero, the velocity error is the same as
the two-microphone sensor given by equation (75) and the normalized error in the energy
density estimate for small kh is given by equation (76), where e (E

D
)"e (ED

3
) and e (ED

3
) is

given by equation (38).

3.2.2.2. Plane progressive wave. It can be shown that for a plane progressive sound "eld,
the pressure estimate for a sensitivity mismatch is given, by [15]

p(
e
"p

e
#b

p
, (78)
Figure 11. Normalized errors as a function of the non-dimensional separation distance (2kh) in a reactive
one-dimensional sound "eld for a transducer sensitivity mismatch (2¹) of 1% and x/¸"1/4: (a) pressure error e(p),
which is zero for the three-microphone sensor; (b) particle velocity error e(v) which is the same for both sensors; (c)
energy density error e(ED), which is the same for both sensors for small kh. Maximum and minimum energy density
error bands are shaded for the two-microphone sensor (dark grey) and the three-microphone sensor (light grey):
** 2-mic sensor; } } } } 3-mic sensor.



Figure 12. Normalized errors in energy density as a function of the non-dimensional separation distance (2kh) in
a reactive one-dimensional sound "eld for several transducer sensitivity mismatches (2¹) with x/¸"1/4:

!4%; !2%; !1%; 0%; 1%; 2%; 4%.
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where b
p

is the additional error due to the magnitude mismatch given by

b
p
"jP¹ sin (kh)+jhkP¹ C1!

(kh)2

6
#

(kh)4

120
!2D. (79)

The normalized pressure error is therefore

e (pL )"e (p)#j¹ sin (kh)"[cos (kh)!1]#j¹ sin (kh). (80)

Therefore, the sensitivity error introduces both a magnitude and phase error into the
pressure estimate. The velocity estimate is given by [15]

v(
e
"v

c
#b

v
, (81)

where b
v
is the additional error due to the magnitude mismatch given by

b
v
"!

¹

jhou
P cos (kh)+!

¹

jhou
PC1!

(kh)2

2
#

(kh)4

24
!2D. (82)

The normalized velocity error is

e (vL )"e (v)#j¹
cos (kh)

kh
"C

sin (kh)

kh
!1D#j¹

cos (kh)

kh
. (83)
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As with the normalized pressure error, the sensitivity error introduces both a magnitude
and phase error which becomes very large as kh approaches zero.

The energy density estimate is given by [15]

EK D
e

"ED
e

#

P2¹2 sin2 (kh)

4oc2
#

¹2P2 cos2 (kh)

4oc2 (kh)2
. (84)

The normalized error is thus,

e (EK
D
)"e (E

D
)#

¹2

2 Asin2 (kh)#
cos2 (kh)

(kh)2 B, (85)

where e (E
D
) is the normalized error in the energy density without the phase mismatch

arising wholly from the "nite separation and is given by equation (47).
For small kh, equation (85) is approximately given by

e (EK
D
)"e (E

D
)#

¹2

2 (kh)2
. (86)

The normalized error in the pressure, velocity and energy density is plotted against the
non-dimensional separation distance in Figure 13 for a sensitivity mismatch of 2¹"1%.
The e!ect of the sensitivity error is shown graphically in Figure 14 where the error in energy
Figure 13. Normalized errors as a function of the non-dimensional separation distance (2kh) in a plane
progressive sound "eld for a transducer sensitivity mismatch (2¹) of 1%: (a) pressure error e(p), which is zero for
the three-microphone sensor; (b) particle velocity error e(v) which is the same for both sensors; (c) energy density
error e(ED): ** 2-mic sensor; } } } } 3-mic sensor.



Figure 14. Normalized error in energy density as a function of the non-dimensional separation distance (2kh) in
a plane progressive sound "eld for several transducer sensitivity mismatches (2¹): 0%; 1%; 2%;

4%.
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density given by equation (85) is plotted against non-dimensional separation distance for
a variety of sensitivity errors.

Clearly, it is essential that the sensitivities of the two microphones are well matched and
in practice, 2¹(1% is certainly achievable.

For a three-microphone sensor, the pressure error is zero, the velocity error is the same as
the two-microphone sensor given by equation (83) and the normalized error in the energy
density estimate is given by the "rst and third terms of equation (85), i.e.,

e (EK
D
)"e (ED

3
)#

¹2

2 A
cos2 (kh)

(kh)2 B, (87)

where e (ED
3
) is the inherent error for the three-microphone sensor given by equation (38).

3.2.3. ¸ength errors

Because of manufacturing tolerances, the distance between acoustic centres of the
microphones can vary. Typically, the accuracy may be in the order of $1 mm. It has been
shown that length errors can lead to signi"cant errors in intensity measurements [10, 13]. In
the case of one-dimensional sound "elds, it is only the length error component in the
direction of energy #ux that will cause errors in the estimates as shown in Figure 15. For
example, if there is no spatial variation of pressure in the y direction, i.e., Lp/Ly"0, then an
error in the y-position, yL "y#e, will not a!ect the pressure estimate, i.e., p (y( )"p (y);
however, an error in the x-position will.



Figure 15. E!ects of length error in the measurement of pressure at a point.
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The e!ects, of length errors will now be analyzed for two types of idealized sound "elds
using a symmetric formulation for the spatial error as was done for the phase and sensitivity
mismatches. It can be shown that the additional error arising from the symmetric
formulation as compared to a non-symmetric formulation is second order and may be
neglected.

3.2.3.1. One-dimensional reactive sound "eld. If the error in position is given by $e, then
the non-dimensional spacing is given by khK "kh#ke or hK /h"1#ke/kh. The normalized
error for the pressure, velocity and energy density estimates are therefore given by [15]

e (pL )"cos (khK )!1+!

(khK )2
2

#

(khK )4
24

!

(khK )6
720

#2, (88)

e (v( )"
sin (khK )

kh
!1+A1#

ke
khB A1!

(khK )2
6

#

(khK )4
120

!

(khK )6
5040

#2B!1, (89)

e (EK
D
)+cos2 (kx)C1!(khK )2#

(khK )4
3 D#sin2 (kx)A

khK
khB

2

C1!
(khK )2

3
#

2(khK )4
45 D!1. (90)

Using hK /h"1#ke/kh, the normalized error for the energy density estimate is

e (EK
D
)+cos2 (kx)C1!(khK )2#

(khK )4
3 D

#sin2 (kx)A1#
ke
khB

2

C1!
(khK )2

3
#

2 (khK )4
45 D!1. (91)

The error in transducer position produces almost no change in the error for the pressure
estimate. However, the velocity estimate is biased by e/h and the energy density error is
biased by approximately 2e/h sin2 (kx).
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From equation (91) it can be seen that for small kh the minimum energy density error
occurs at kx"nn and is approximately given by e (EK

D
)
min

"e (E
D
), which is the error arising

from only the "nite microphone separation. The maximum error in the energy density
estimate is found at kx"(2n#1)n/2,

e (EK
D
)
max

"e (E
D
)#2

e
h
. (92)

The truncated Taylor series expansions for the normalized error in pressure, velocity and
energy density as given by equations (88)}(90) using a 4% error in the transducer location
are plotted against the non-dimensional separation distance in Figure 16, with
a non-dimensional position of x/¸"1

4
.

The normalized error in the energy density given by equation (91) is shown graphically in
Figure 17 where the error is plotted against non-dimensional separation distance for
a variety of length errors.

For a three-microphone sensor, for small kh the error in energy density is given by

e (EK
D
)+cos2 (kx)#sin2 (kx)A1#

ke
khB

2

C1!
(khK )2

3
#

2 (khK )4
45 D!1. (93)

Therefore, the additional microphone does not greatly assist in reducing the low-frequency
error resulting from length e!ects in a reactive sound "eld.
Figure 16. Normalized errors as a function of the non-dimensional separation distance (2kh) in a reactive
one-dimensional sound "eld for a e/h"4% error in the transducer position with x/¸"1/4: (a) pressure error e(p)
which is zero for the three-microphone sensor; (b) particle velocity error e(v) which is the same for both sensors; (c)
energy density error e(ED) which is approximately the same for both sensors for small kh. Maximum and minimum
energy density error bands are shaded for the two-microphone sensor (dark grey) and the three-microphone sensor
(light grey) which is hidden: ** 2-mic sensor; ) ) ) ) 3-mic sensor.



Figure 17. Normalized error in the energy density estimate as a function of the non-dimensional separation
distance (2kh) in a reactive one-dimensional sound "eld for several transducer position errors with x/¸"1/4:

8%; 4%; 2%; 0%; 2%; 4%; 8%.
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3.2.3.2. Plane progressive wave. In the case of a plane wave the e!ect of an error in the
length is the same as a phase mismatch. For a length error of 2e then khK "kh#ke or
hK /h"1#ke/kh. The normalized errors for the pressure, velocity and energy density are
given by [15]

e (p)"cos (khK )!1+!

(khK )2
2

#

(khK )4
24

!

(khK )6
720

#2, (94)

e (v)"
sin (khK )

kh
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khBA1!

(khK )2
6

#

(khK )4
120

!

(khK )6
5040

#2B!1, (95)

e (EK
D
)+

1

2 C1!(hK k)2#
1

3
(hK k)4D#

(1#ke/kh)2

2 C1!
1

3
(hK k)2#

2

45
(hK k)4D!1. (96)

As was the case for the reactive sound "eld, the pressure estimate changes very little, the
velocity is biased by e/h and the energy density error is also biased by e/h for small e/h since
(1#e/h)n+1#ne/h. Therefore, the e!ect of the spacing error is to increase the "nite
di!erence error by a factor of approximately e/h which can be seen in Figure 18 for an error
of 4%.

The normalized error in the energy density given by equation (96) is shown graphically in
Figure 19 where the error is plotted against non-dimensional separation distance for
a variety of length errors.

For a three-microphone sensor the normalized errors are given by the errors arising from
a phase mismatch with /

s
"ke. The normalized error in the pressure is clearly zero, the



Figure 18. Normalized errors as a function of the non-dimensional separation distance (2kh) in a free
progressive sound "eld for a e/h"4% error in the transducer position: (a) pressure error e(p), which is zero for the
three-microphone sensor; (b) particle velocity error e(v), which is the same for both sensors; (c) energy density error
e(ED), which is the same for both sensors for small kh: ** 2-mic sensor; } }} } 3-mic sensor.
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error for the velocity is the same as for the two-microphone sensor given by equation (95)
and the normalized error in the energy density is given by the second term in equation (96),
i.e.,

e (EK D
3
)+

(1#ke/kh)2

2 C1!
1

3
(hK k)2#

2

45
(hK k)4D!

1

2
. (97)

Therefore, since it is the e/h bias error arising from the (1#ke/kh)2 term that dominates
the error in the energy density estimate at low frequencies, it can be concluded that the use
of the additional microphone does not reduce the bias error in the energy density resulting
from length errors in a progressive plane wave.

3.3. OTHER ERROR SOURCES

3.3.1. Di+erent and interference e+ects at the microphones

Di!raction and interference e!ects arising from the "nite size of the closely spaced
microphones are extremely di$cult to estimate. The e!ect becomes more important at very
high frequencies where it results in large phase deviations. Fortunately, at the same time, the
phase deviations at high frequencies have less in#uence over the accuracy (see section on
phase and sensitivity errors).



Figure 19. Normalized error in the energy density estimate as a function of the non-dimensional separation
distance (2kh) in a free progressive sound "eld for several transducer position errors e/h: 8%; 4%;

2%; 0%; 2%; 4%; 8%.
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Based on previous research on the obstacle e!ects on the measurement of sound intensity
[3,7,9], the errors are thought to be negligible within the frequency range of most active
noise control applications (60}600 Hz) and will not be considered here. Naturally, the more
solid material used the greater the e!ects of di!raction and therefore the design should aim
to minimize the solid bulk of the energy density sensor.

3.3.2. Mean -ow and turbulence

According to Fahy [13], strictly speaking, the two-microphone technique used for the
sensing of particle velocity is invalid in the presence of mean #ow, however small, because it
is based on the zero mean #ow momentum equation. It can be shown that in the presence of
mean #ow with Mach number, M, the momentum equation becomes [13]

Lp

Lx
"!juo

0
u (1!M), (98)

where u is the particle velocity due to the acoustic "eld. Therefore, the error in the energy
density will be small if M@1. It should be noted that the mean #ow may arise from
exposure of the sensor to vibrations and hence should be avoided.

In any measurements in the presence of mean #ow there will always be unsteady
components acting on the microphones which can lead to errors. Therefore, the sensor must
be protected from the e!ects of turbulence, which is commonly achieved with the use of
foam windshields.
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3.3.3. Environmental e+ects

For the two-microphone technique to work e!ectively in a range of environments it is
essential that the microphones used are stable over a range of temperatures and humidities.
Obviously, sensors used in stable environments such as laboratories can tolerate
temperature and humidity sensitivities, whereas sensors used on site require highly stable
microphones.

3.3.4. Statistical or random errors

Random errors are not in#uenced by the speci"c measurement situation and may arise
from electrically generated random noise, turbulent #ow and local vibrations on the
instrument [10,13]. The random error in the transfer function estimate between two
microphones is given by [10]

e
r
(DH

12
D)+S

1!c2
12

2nc2
12

, p (U
12

)+e
r
(DH

12
D), (99, 100)

where e
r
is the normalized random error in the transfer function, c2

12
equals the coherence

between the signals from the two microphones, n is the number of averages and p is the
standard deviation of the transfer function in radians. It is evident from the above equations
that in order to keep the random errors small, the coherence must be kept high. In practice,
the coherence between microphones with small spacings is always high (c2'0)9) and
subsequently, the error in the transfer function between the microphones is low.

While random errors may be an issue for the measurement of time-averaged sound
intensity it is not a signi"cant issue for the use of energy density as an error signal. This is
particularly true in a feedforward control system, where the e!ects of uncorrelated random
noise are negligible on the calculation of the optimum phase and magnitude of the control
sources. However, the noise does reduce the dynamic range of the system and if the noise
signal becomes large compared to the signals due to the primary "eld then this may limit the
reduction that can be achieved. If care is taken, then the e!ect of these random errors are
inconsequential and subsequently, these e!ects were not thoroughly investigated here. Even
for feedback systems (which are only e!ective at controlling noise with a reasonably high
auto-correlation coe$cient) it is not expected that this type of error will reduce the level of
control signi"cantly provided that good signal-to-noise ratios are maintained.

3.4. SUMMARY

It should be noted that in practice a variety of errors will occur in the measurement of the
energy density and the resulting normalized errors are not simply additive but rather the
errors become compounded in a very complicated fashion and are heavily dependent on the
sound "eld characteristics. It can be said however, that the above analysis does provide an
indication of the magnitude of the errors to be expected from a typical sensor operating in
two idealized sound "elds. Table 1 presents a summary of the typical errors experienced
during the measurement of energy density.

Table 1 can be used to de"ne the frequency bounds for a sensor. For example, let the
permissible normalized error in the energy density be 10% and the operating range be the
decade 60}600 Hz. For a reactive sound "eld, the location of the sensor in the "eld
determines the size of the error, so it is important to use the largest error in the "eld. The
upper frequency limit (restricted by the inherent error) de"nes the largest size that the sensor
may be i.e., 2h(57 mm. All other instrumentation errors determine the smallest size that
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Summary of approximate normalized errors in energy density, e (E
D
), where 2kh is the non-dimensional spacing between microphones, kx is the

position in the reactive sound ,eld, 2/
s
is the phase error, 2¹ is the error in the sensitivity and 2e is the error in the location of the microphones
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the sensor may be. For a phase error of 2/
s
"13, then 2h'50 mm. For a sensitivity error of

2¹"0)5%, then 2h'45 mm. For a position error of 2e"2 mm, then 2h'40 mm.
A suitable compromise for such a design may be 2h"50 mm. This in fact has formed the
basis of the design of several 3D energy density sensor con"gurations studied by the authors
in the companion paper [14].

4. CONCLUSIONS

An expression has been derived for the energy density estimate in ideal one-dimensional
sound "elds using two or three microphones. The errors in the energy density estimate
arising from several sources were considered; inherent errors ("nite di!erance and "nite
sum), phase errors, sensitivity errors, length errors, di!raction and interference e!ects, and
other error sources such as temperature and humidity.

The inherent errors were found to limit the upper frequency range of the energy density
sensor, and the instrumentation (phase and sensitivity) errors where found to de"ne the
low-frequency limit.
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